The student will construct and judge the validity of a logical argument consisting of a set of premises and a
conclusion. This will include
a) identifying the converse, inverse, and contrapositive of a conditional statement;
b) translating a short verbal argument into symbolic form;
c) using Venn diagrams to represent set relationships; and
d) using deductive reasoning.

- Identify the converse, inverse, and contrapositive of a conditional statement.
- Translate verbal arguments into symbolic form, such as $(p \rightarrow q)$ and ($\sim p \rightarrow \sim q$).
- Determine the validity of a logical argument.
- Use valid forms of deductive reasoning, including the law of syllogism, the law of the contrapositive, the law of detachment, and counterexamples.
- Select and use various types of reasoning and methods of proof, as appropriate.
- Use Venn diagrams to represent set relationships, such as intersection and union.
- Interpret Venn diagrams.
- Recognize and use the symbols of formal logic, which include $\rightarrow, \leftrightarrow, \sim, \therefore, \wedge$, and V.

WHAT I NEED TO KNOW:

CONDITIONAL STATEMENTS		
converse	inverse	contrapositive
Switch conclusion	Negate conclusion	Switch \& Negate conclusion
WHICH IS LOGICALLY EQUIVALENT TO		
CONDITIONAL?		

LAWS		
1. Detachment	2. Syllogism	3. Contrapositive
$p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$
p	$\underset{\sim}{q \rightarrow r}$	$\underset{\sim}{\sim}$
$\therefore q$	$\therefore p \rightarrow r$	$\therefore \sim p$

Symbols	
\rightarrow	conditional (if, then)
\leftrightarrow	biconditional (ifi, and only if)
\sim	not
\therefore	therefore
Λ	and
V	or

Venn diagrams					
If \mathbf{p}, then \mathbf{q}.	ALL	SOMETIMES	NO	UNION OF 2 SETS	INTERSECTION OF 2 SETS

G. 1 PROBLEMS:

Let m represent:
Angle A is obtuse.
A. $\quad \boldsymbol{m} \rightarrow \boldsymbol{n}$
B. $\quad \boldsymbol{m} \rightarrow \boldsymbol{n}$
C. $m \leftrightarrow n$
(D. $m \leftrightarrow n$
$m \wedge n$
$m \vee n$
$m \wedge n$
$\boldsymbol{m} \vee \boldsymbol{n}$
$\therefore m \vee n$
$\therefore m \wedge n$
$\therefore m \vee n$
$\therefore m \wedge n$

Let \boldsymbol{n} represent:
Angle B is obtuse.
Which is a symbolic representation of the following argument?
Angle A is obtuse if and only if Angle B is obtuse.
Angle A is obtuse or Angle B is obtuse.
Therefore, Angle A is obtuse and Angle B is obtuse.

The Venn diagram represents the set of cell phones in a store.

- Let P represent the cell phones that take pictures.
- Let I represent the cell phones that connect to the Internet.
- Let G represent the cell phones that have games.

Identify each region of the Venn diagram that represents the cell phones that only take pictures and have games.

Let p represent

$\angle A$ is acute.

Let q represent
$\angle B$ is acute.

Create a symbolic representation of the following argument.

$$
\angle A \text { is acute if and only if } \angle B \text { is acute. } \quad p \leftrightarrow q
$$

$\angle A$ is acute or $\angle B$ is acute.
$p \vee q$
Therefore, $\angle A$ is acute and $\angle B$ is acute.

$p \rightarrow q$	$p \leftrightarrow q$	$p \wedge q$	$p \vee q$	$\therefore p \wedge q$	$\therefore p \vee q$

a) determine whether two lines are parallel;
b) verify the parallelism, using algebraic and coordinate methods as well as deductive proofs;
c) solve real-world problems involving angles formed when parallel lines are cut by a transversal.

- Use algebraic and coordinate methods as well as deductive proofs to verify whether two lines are parallel.
- Solve problems by using the relationships between pairs of angles formed by the intersection of two parallel lines and a transversal including corresponding angles, alternate interior angles, alternate exterior angles, and same-side (consecutive) interior angles.
- Solve real-world problems involving intersecting and parallel lines in a plane.

WHAT I NEED TO KNOW:

Special ANGLE PAIR NAMES	WHERE THEY ARE LOCATED on parallel lines cut by a transversal	ARE THEY CONGRUENT OR SUPPLEMENTARY?	How to set up an equation to solve for \mathbf{x}
Corresponding angles		congruent	$\ldots=$
Alternate interior angles		congruent	$\ldots=$
Alternate exterior angles		congruent	\ldots
Same-side (consecutive) interior angles		supplementary	$\ldots+\ldots=180$

G. 2 PROBLEMS:

Lines a and b intersect lines c and d.

Which statement could be used to prove $a \| b$ and $c \| d$?
A. $\angle 1$ and $\angle 2$ are supplementary and $\angle 5 \cong \angle 6$
B. $\angle 1 \cong \angle 3$ and $\angle 3 \cong \angle 5$
C. $\angle 3$ and $\angle 5$ are supplementary, and $\angle 5$ and $\angle 6$ are supplementary
D. $\angle 3 \cong \angle 4$ and $\angle 2 \cong \angle 6$

Lines a and b intersect lines c and d.

Which of the following statements could be used to prove that $a \| b$ and $c \| d$?
A $\angle 1 \cong \angle 6, \angle 3 \cong \angle 5$
B $\angle 1 \cong \angle 6, \angle 4$ and $\angle 5$ are supplementary
C $\angle 1 \cong \angle 4, \angle 1$ and $\angle 2$ are supplementary
D $\angle 1$ and $\angle 3$ are supplementary, $\angle 1$ and $\angle 6$ are supplementary

SOL G. 3

The student will use pictorial representations, including computer software, constructions, and coordinate
methods, to solve problems involving symmetry and transformation.
a) investigating and using formulas for finding distance, midpoint, and slope;
b) applying slope to verify and determine whether lines are parallel or perpendicular;
c) investigating symmetry and determining whether a figure is symmetric with respect to a line or a point; and
d) determining whether a figure has been translated, refiected, rotated, or dilated, using coordinate methods.

- Find the coordinates of the midpoint of a segment, using the midpoint formula.
- Use a formula to find the slope of a line.
- Compare the slopes to determine whether two lines are parallel, perpendicular, or neither.
- Determine whether a figure has point symmetry, line symmetry, both, or neither.
- Given an image and preimage, identify the transformation that has taken place as a reflection, rotation, dilation, or translation.
- Apply the distance formula to find the length of a line segment when given the coordinates of the endpoints.

WHAT I NEED TO KNOW:

FORMULAS

FORMULAS		ENDPOINT	
DISTANCE	MIDPOINT	SLOPE	DMSE
$\sqrt{a^{2}+b^{2}}$	SAD (Stack Em, Add Em, Divide Em by 2)	DISE or	ORN (Double the Midpoint, Subtract the Endpoint)
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	$\left(\frac{x_{2}+y_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$	$\frac{\Delta y}{x_{2}-x_{1}}$	

HOW TO TELL WHETHER LINES ARE PARALLEL OR PERPENDICULAR

PARALLEL LINES

Slopes are equal

PERPENDICULAR LINES

Slopes are opposite reciprocals. Slopes have product of -1 .

SYMMETRY	
LINE	POINT
fold over a line and get a match	figure looks the same when upside down

TRANSFORMATIONS			
TRANSLATION	REFLECTION	ROTATION	DILATION
$\begin{gathered} \text { slide } \\ (x, y) \rightarrow(x \pm a, y \pm b) \end{gathered}$		$\begin{aligned} & \text { turn } \\ & 90^{\circ} \text { rotation: } \\ & (x, y) \rightarrow(-y, x) \\ & 180^{\circ} \text { rotation: } \\ & (x, y) \rightarrow(-x,-y) \\ & 270^{\circ} \text { rotation: } \\ & (x, y) \rightarrow(y,-x) \end{aligned}$	bigger/smaller If center of rotation is origin: $(x, y) \rightarrow(k x, k y)$

WHAT THE FOLLOWING GRAPHS LOOK LIKE			
$y=x$	$\mathrm{y}=-\mathrm{x}$	$\mathrm{y}=$ \#	X = \#

G. 3 PROBLEMS:

Line t contains the points ($-4,7$) and ($5,-8$). Plot a point other than point P with integral coordinates that lies on a line that is parallel to t and passes through point P.

Quadrilateral QRST is to be reflected over the line $y=-x$. What are the coordinates of point T^{\prime} after this reflection?

$(6,-1)$ or $(0,9)$

A $(-4,2)$
B $(-2,-4)$
C $(2,4)$
D $(4,-2)$

Given: Triangle $A B C$ with vertices located at
$A(1,1), B(2,-3)$, and $C(-1,-4)$.

Triangle $A B C$ will be reflected over the line $y=x$. What will be the integral coordinates of point C^{\prime} after this transformation?

Line a passes through points with coordinates $(-4,5)$ and $(2,-2)$. What is the slope of a line perpendicular to line a ?

Slope of perpendicular line $=\square$

What is the total number of lines of symmetry for this figure?

- Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
- Construct the inscribed and circumscribed circles of a triangle.
- Construct a tangent line from a point outside a given circle to the circle.

WHAT I NEED TO KNOW:

| WHAT EACH CONSTR |
| :--- | :--- | :--- | :--- |

construction	siteps	

G. 4 PROBLEMS:

Which construction represents a correct first step in constructing a line segment perpendicular to $\overline{J K}$ through point \boldsymbol{P} ?

A
$\stackrel{\bullet}{P}$

${ }_{P}^{\bullet}$
c

D

Ben plans to bisect $\angle A B C$ to create the congruent angles $A B D$ and $C B D$.

Which angle is congruent to $\angle A B D$ and $\angle C B D$?
O

D

Point A represents a vertex of an equilateral triangle inscribed in circle O.

A Point W
B Point X
C Point Y
(D) Point Z

- Order the sides of a triangle by their lengths when given the measures of the angles.
- Order the angles of a triangle by their measures when given the lengths of the sides.
- Given the lengths of three segments, determine whether a triangle could be formed.
- Given the lengths of two sides of a triangle, determine the range in which the length of the third side must lie.
- Solve real-world problems given information about the lengths of sides and/or measures of angles in triangles.

HOW TO ORDER THE SIDES OF A TRIANGLE BY THEIR LENGTHS GIVEN THE MEASURES OF THE ANGLES

In a triangle, the longest side is across from the largest angle.

HOW TO ORDER THE ANGLES OF A TRIANGLE BY THEIR MEASURES WHEN GIVEN THE LENGTHS OF THE SIDES

In a triangle, the largest angle is across from the longest side.

HOW TO DETERMINE IF 3 GIVEN LENGTHS FORM A TRIANGLE

The sum of the lengths of any two sides of a triangle must be greater than the third side. Add the $\mathbf{2}$ smallest sides and see if the sum is greater than the greatest side.

HOW TO DETERMINE THE RANGE OF THE THIRD SIDE OF THE TRIANGLE GIVEN 2 SIDE LENGTHS

Add the 2 sides to find the large number in the range. Subtract the 2 sides to find the small number in the range. Write the range as follows:

> Small number < x < Large number
x represents possible side lengths of $3{ }^{\text {rd }}$ side of triangle

G. 5 PROBLEMS:

Given: Triangle $A B C$ with $A B=42$ and $B C=20$
 Which of the following are possible lengths for $\boldsymbol{A C}$?

$\begin{array}{llllllll}12 & 20 & 22 & 32 & 42 & 50 & 62 & 70\end{array}$

Given the following diagram of a triangle, write in the angle measures and side lengths from the given box that would make the triangle possible. (Figure not drawn to scale.)

8

Two sides of a triangle measure 9 inches and 13 inches. Write the numbers in the boxes that would correctly represent the range of the third side of the triangle.

The diagram is a map showing Jaime's house, Kay's house and the grocery store. Write the segments that represent the distances from each place in order from least to greatest.

- Use definitions, postulates, and theorems to prove triangles congruent.
- Use coordinate methods, such as the distance formula and the slope formula, to prove two triangles are congruent.
- Use algebraic methods to prove two triangles are congruent.

WHAT I NEED TO KNOW:

5 METHODS OF PROVING TRIANGLES ARE CONGRUENT

PROPERTIES THAT HELP PROVE TRIANGLES ARE CONGRUENT

Reflexive Property, Midpoint of a Segment, Symmetric Property, Transitive Property, Alternate Interior Angles, Corresponding Angles, Base Angles of Isosceles Triangle, Segment Bisector, Angle Bisector, Substitution Property

> FORMULA USED WHEN PROVING TRIANGLES ARE CONGRUENT USING COORDINATE GEOMETRY

Distance formula

WHAT DOES CPCTC MEAN?	HOW TO USE AND WRITE A \cong STATEMENT
Corresponding Parts of Congruent Triangles are Congruent	$\Delta A B C \cong \triangle D E F$ means $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong$ $F, \overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, a n d \overline{A C} \cong \overline{D F}$.

G. 6 PROBLEMS:

Select the reasons for the last three statements of this proof.
Given: $\angle Q S R \cong \angle T R S ; \overline{P R} \cong \overline{P S}$

Prove: $\triangle Q S R \cong \triangle T R S$

Options

Statements	Reasons	Base angles of an isosceles
1. $\overline{P R} \cong \overline{P S}$	1. Given	
$\angle Q S R \cong \angle T R S$	- Base angles of an isosceles	Corresponding parts of congruent triangles are congruent
2. $\angle T S R \cong \angle Q R S$	2. triangle are congruent	Reflexive property
3. $\overline{S R} \cong \overline{R S}$	3. Reflexive Property	Angle-Side-Angle (ASA) Postulate
4. $\triangle Q S R \cong \triangle T R S$	4. Angle-Side-Angle (ASA) Postu	Side-Angle-Side (SAS) Postulate

What value of x makes $\triangle S T W \cong \triangle X Y Z$?

A 2
B 3
C. 4

D 6

The vertices of $\triangle A B C$ and the endpoints of $\overline{D E}$ have integral coordinates. Plot point F with integral coordinates so that $\wedge A B C \cong \wedge D E F$.

Given: $\overline{A B} \| \overline{C D}, \overline{A F} \cong \overline{F D}$

Prove: $\triangle \mathrm{ABF} \cong \triangle \mathrm{DCF}$

Statements

1. $\overline{A B} \| \overline{C D}, \overline{A F} \cong \overline{F D}$
2. $\angle B A F \cong \angle C D F$
3. $\angle A F B \cong \angle D F C$
4. $\triangle A B F \cong \triangle \mathrm{DCF}$
(other solutions are possible)

Reasons

1. Given
2. If parallel lines are cut
by a transversal, then pairs of alternate interior angles are congruent.
3. Vertical angles are \cong.
4. Angle-Side-Angle
(ASA) Postulate

- Use definitions, postulates, and theorems to prove triangles similar.
- Use algebraic methods to prove that triangles are similar.
- Use coordinate methods, such as the distance formula, to prove two triangles are similar.

WHAT I NEED TO KNOW:

3 METHODS OF PROVING TRIANGLES ARE SIMILAR

CORRESPONDING SIDES ARE PROPORTIONAL AND CORRESPONDING ANGLES ARE CONGRUENT

WHAT DOES THIS MEAN?

Corresponding sides are proportional means that if you find the scale factor of the corresponding longer sides, the scale factor of the corresponding smaller sides, and the scale factor of the corresponding medium sides, they should all be equivalent. Corresponding angles are congruent means that the angles in the same position in both triangles should have the same measure.

HOW TO SET UP A PROPORTION WHEN SOLVING FOR A MISSING SIDE

WHAT IS A SIMILARITY RATIO (SCALE FACTOR) AND HOW TO USE IT
Scale factor = ratio of corresponding sides

$$
\frac{\text { Small side of } \Delta_{1}}{\text { Small side of } \Delta_{2}}=\frac{\text { Big side of } \Delta_{1}}{\text { Big side of } \Delta_{2}}
$$

Length of side of Δ_{1} Corresponding length of side of Δ_{2}

G. 7 PROBLEMS:

For what value of x is $\triangle A B C \sim \triangle D E F$?
(A) 18

Complete the proof.

Given: $\overline{\overline{B A}} \perp \overline{A C}$ Prove: $\triangle B F A \sim \triangle C F D$ Statements			
1. Given: $\begin{array}{r}\overline{B A} \\ \overline{D C}\end{array} \overline{A C} \overline{A C}$	1. Given	$\begin{aligned} & \angle D F C \cong \angle B F A ; \\ & \angle D A B \cong \angle B C D \end{aligned}$	
2. $\overline{B A} \\| \overline{D C}$	2. If two lines are perpendicular to a third line, then the two lines are parallel.	$\begin{aligned} & \angle C B A \cong \angle A D C \\ & \angle B A D \cong \angle D C B \end{aligned}$	
3. $\angle C D A \cong \angle B A D$;	3. If two parallel lines are cut by a transversal,	$\begin{aligned} & \angle C D A \cong \angle B A D \\ & \angle C B A \cong \angle B C D \end{aligned}$	
4. $\triangle B F A \sim \triangle C F D$	4. Angle-Angle (AA)	Angle-Angle (AA) Postulate	
	Postulate	Side-Angle-Side (SAS) Postulate	

Gïven: $\triangle A C F$ is subdivided into smaller triangles
$\overline{A C} \perp \overline{A F}$ and $\overline{A C} \perp \overline{B E}$ and $\overline{A E} \perp \overline{C F}$
Point B lies on $\overline{A C}$ and points D and E lie on $\overline{C F}$

Based on the given information, identify two triangles that may NOT be similar.

$\triangle A C F \triangle B C E \triangle B E A \quad \triangle D B E \triangle E A F$

Given: $\overline{A B} \mid \overline{C D}$

Prove: $\triangle \mathrm{ABF} \sim \triangle \mathrm{DCF}$

Statements

1. $\overline{A B} \| \overline{C D}$
2. $\angle B A F \cong \angle C D F$
3. Alternate interior angles are congruent.
4. $\angle A B F \cong \angle D C F$ 3. Vertical angles are congruent.
5. . $\triangle A B F \cong \triangle D C F$ 4. Angle-

Angle (AA)
Postulate

SOL G. 8

The student will solve real-world problems involving right triangles by using the Pythagorean Theorem and its converse, properties of special right triangles, and right triangle trigonometry.

- Determine whether a triangle formed with three given lengths is a right triangle.
- Solve for missing lengths in geometric figures, using properties of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.
- Solve for missing lengths in geometric figures, using properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.
- Solve problems involving right triangles, using sine, cosine, and tangent ratios.
- Solve real-world problems, using right triangle trigonometry and properties of right triangles.
- Explain and use the relationship between the sine and cosine of complementary angles.

CALCULATOR MODE
WHAT I NEED TO KNOW:
gree

WHAT FORMULAS TO USE FROM THE FORMULA SHEET AND WHEN TO USE THEM

$a^{2}+b^{2}=c^{2}$

WHEN TO:	
ADD	SUBTRACT
Know legs, trying to find hypotenuse	Know hypotenuse and one leg, trying to find other leg

$z a$
$\sin \theta=\frac{y}{z}$
$\cos \theta=\frac{x}{z}$
$\operatorname{Tan} \theta=\frac{y}{x}$

WHEN TO:		
MULTIPLY	DIVIDE	USE INVERSE
Variable on top	Variable on the bottom	Trying to find the angle, ϑ

HOW TO DETERMINE WHETHER A TRIANGLE FORMED WITH THREE GIVEN LENGTHS IS A RIGHT TRIANGLE
Use the converse of the Pythagorean theorem. Is c^{2} equal to $a^{2}+b^{2}$? C is the hypotenuse. A and B are the legs. Put c^{2} in your calculator. Put $a^{2}+b^{2}$ in your calculator. Check to see if they are equal.

SPECIAL RIGHT TRIANGLES	
$45^{\circ}-45^{\circ}-90^{\circ}$	$30^{\circ}-60^{\circ}-90^{\circ}$

STEPS TO SIDE OR ANGL	
ROLVING FOR MISSING	
RATIOS	

HOW TO USE AND EXPLAIN THE RELATIONSHIP BETWEEN THE SINE AND COSINE OF COMPLEMENTARY ANGLES

The cosine of an acute angle of a right triangle is congruent to the sine of the complementary angle of that same triangle.

G. 8 PROBLEMS:

A ladder leans against a wall. The bottom of the ladder is 10 feet from the base of the wall, and the top of the ladder makes an angle of 25° with the wall. Find the length, x, of the ladder.
23.7 ft

10 ft .

The figure represents the side view of a rectangular frame for metal shelves. Two diagonal braces support the frame.

Which is closest to the measure of x ?

A 7°
B 14°
C 8°
D 76°

This figure models a gate that has been constructed using two parallel vertical boards with a diagonal board connecting them. Identify all of the statements that must be true.

- Solve problems, including real-world problems, using the properties specific to parallelograms, rectangles, rhombi, squares, isosceles trapezoids, and trapezoids.
- Prove that quadrilaterals have specific properties, using coordinate and algebraic methods, such as the distance formula, slope, and midpoint formula.
- Prove the characteristics of quadrilaterals, using deductive reasoning, algebraic, and coordinate methods.
- Prove properties of angles for a quadrilateral inscribed in a circle.

CHARACTERISTICS		WHICH QUADRILATERALS HAVE THIS CHARACTERISTIC	WHAT ARE THE COORDINATE PROOFS FOR THIS CHARACTERISTIC	
SIDES				
1.	Opp. sides \|		Parallelogram, rectangle, square, rhombus	Slope formula
2.	Opp. sides \cong	Parallelogram, rectangle, square, rhombus	Distance formula	
3.	Exactly one pair of opp. sides \|		trapezoid	Slope formula
ANGLES				
1.	Opp. angles \cong	Parallelogram, rectangle, square, rhombus		
2.	Consecutive angles supplementary	Parallelogram, rectangle, square, rhombus		
DIAGONALS				
1.	Diagonals bisect each other	Parallelogram, rectangle, square, rhombus	Midpoint formula	
2.	Diagonals are congruent	Rectangle, Square, Isosceles Trapezoid	Distance formula	
3.	Diagonals are perpendicular	Rhombus, Square, Kite	Slope formula	
4.	Diagonals bisect the angles	Rhombus, Square		

HOW TO PROVE A QUADRILATERAL IS A SPECIFIC FIGURE						
PARALLELOGRAM	RECTANGLE	RHOMBUS	SQUARE	ISOSCELES TRAPEZOID	TRAPEZOID	
Prove opposite sides are \cong	Prove opp. sides are \cong and diagonals \cong	Prove all sides are \cong	Prove all sides \cong and four right $\angle ' s$	Prove one pair of sides is in and other is not and prove non sides are \cong	Prove one pair of sides is $\\|$	

G. 9 PROBLEMS:

Given: Quadrilateral $A B C D$

Which expression proves that $A B C D$ is a rectangle?
(A) The length of each diagonal is $\sqrt{r^{2}+s^{2}}$.

B The common midpoint of the diagonals is $\left(\frac{r}{2}, \frac{s}{2}\right)$.
C The slope of $\overline{A C}$ is $\frac{s}{r}$ and the slope of $\overline{B D}$ is $\frac{-s}{r}$.
D The length of both $\overline{A B}$ and $\overline{C D}$ is r and the length of both $\overline{A D}$ and $\overline{B C}$ is s.

The diagonals of a rhombus are 10 and 24 .
Find the perimeter of the rhombus.

Find the length of the side of the parallelogram represented by $4 x-1$.

$$
\begin{aligned}
& 2 x+10=5 x-20 \\
& x=10 \\
& 4 x-1=39
\end{aligned}
$$

SOL G. 10

The student will solve real-world problems involving angles of polygons.

- Solve real-world problems involving the measures of interior and exterior angles of polygons.
- Identify tessellations in art, construction, and nature.
- Find the sum of the measures of the interior and exterior angles of convex polygon.
- Find the measure of each interior and exterior angle of a regular polygon.
- Find the number of sides of a regular polygon, given the measures of interior or exterior angles of the polygon.

WHAT I NEED TO KNOW:

POLYGONS								
DEFINITION OF REGULAR POLYGON								
Polygon with all sides congruent and all angles congruent.								
NUMBER OF SIDES GIVEN THE NAME								
TriANGLE	OUADRILATERAL	Pentagon	Hexagoo	HEPTAGON	OCtagon	NoNaGON	DECAGOO	Dodecacon
3	4	5	6	7	8	9	10	12
HOW TO FIND THE SUM OF THE INTERIOR AND EXTERIOR OF CONVEX POLYGONS			HOW TO FIND THE MEASURE OF EACH INTERIOR AND EXTERIOR OF A REGULAR POLYGON			HOW TO FIND THE NUMBER OF SIDES OF A REGULAR POLYGON, GIVEN THE MEASURES OF INTERIOR OR EXTERIOR ANGLES OF THE POLYGON		
Sum of interior $=(\mathrm{n}-2) \cdot 180$			$\text { Exterior = } 360 / \text { \# of sides }$$\text { \| Interior = } 180 \text { - exterior }$			```Given interior: 180 - interior = exterior \(360 /\) exterior \(=\) \# of sides Given exterior: 360/exterior = \# of sides```		
Sum of exterior $=360^{\circ}$								

TESSELLATIONS
WHICH REGULAR POLYGONS TESSELLATE
Equilateral Triangle

A repeated pattern with no gaps or overlaps that covers a plane

Only regular polygons that have an interior angle which is a factor of 360 will tessellate.

G. 10 PROBLEMS:

This figure is composed of a regular pentagon and a rectangle.

What is the measure of each of the angles identified as x ?
(A) 36°

B 54°
C 72°
D 108°

Which of these regular polygons could tessellate a plane?

Square Pentagon Octagon Hexagon Decagon

The figure shown is a regular hexagon.

What is the length of the diagonal $A C$?
(A) $4 \sqrt{3} \mathrm{in}$.

B 8 in .
C 12 in .
D $8 \sqrt{3} \mathrm{in}$.

The student will use angles, arcs, chords, tangents, and secants to
a) investigate, verify, and apply properties of circles;
b) solve real-world problems involving properties of circles; and
c) find arc lengths and areas of sectors in circles.

- Find lengths, angle measures, and arc measures associated with
- two intersecting chords;
- two intersecting secants;
- an intersecting secant and tangent;
- two intersecting tangents; and
- central and inscribed angles.
- Calculate the area of a sector and the length of an arc of a circle, using proportions.
- Solve real-world problems associated with circles, using properties of angles, lines, and arcs.
- Verify properties of circles, using deductive reasoning, algebraic, and coordinate methods.

WHAT I NEED TO KNOW:

FORMULAS (area and circumference on formula sheet)		
AREA OF SECTOR	LENGTH OF AN ARC	
 Part of area $\frac{\mathrm{m}^{\circ} \text { of arc } \cdot \pi r^{2}}{360^{\circ}}$		Part of circumference $\frac{\mathrm{m}^{\circ} \text { of arc } \cdot 2 \pi r}{360^{\circ}}$

LENGTHS							
INTERSECTING							
INSIDE OF CIRCLE							

INSIDE	OUTSIDE	CENTRAL	ON
Angle $=\frac{\operatorname{arc}+\operatorname{arc}}{2}$	Angle $=\frac{\operatorname{arc}-\operatorname{arc}}{2}$	Angle $=\operatorname{arc}$	Angle $=\frac{\operatorname{arc}}{2}$

G. 11 PROBLEMS:

Given: Three concentric circles with the center O

$$
\overline{K L} \cong \overline{L N} \cong \overline{N O}
$$

$$
K P=42 \text { inches }
$$

Which is closest to the area of the shaded region?

A 231 sq in.
B 308 sq in .
C 539 sq in .
(D) 616 sq in .

Bob divides his circular garden into 10 congruent sectors to plant different types of flowers. The circumference of Bob's garden is $\mathbf{5 0 . 5}$ feet. What is the area of one sector of Bob's garden?
20.3 sq. ft.

In circle $O, m \overparen{F G}=\mathbf{3 0 ^ { \circ }}, \boldsymbol{m C} \overparen{B C}=120^{\circ}$, and $\angle J \cong \angle K$.

What is $m \overparen{E H}$?
A 35°
B 40°
C 45°
(D) 50°

Given: Circle T with $W P=\mathbf{3 6}$ centimeters

Which best represents the area of the shaded sector?

Given: Circle M with secants $\overrightarrow{A B}$ and $\overrightarrow{A C}$

$$
m \angle A=30^{\circ}
$$

If the length of arc $B C$ is $\mathbf{3 ~ c m}$, what is the circumference of the circle?

- Identify the center, radius, and diameter of a circle from a given standard equation.
- Use the distance formula to find the radius of a circle.
- Given the coordinates of the center and radius of the circle, identify a point on the circle.
- Given the equation of a circle in standard form, identify the coordinates of the center and find the radius of the circle.
- Given the coordinates of the endpoints of a diameter, find the equation of the circle.
- Given the coordinates of the center and a point on the circle, find the equation of the circle.
- Recognize that the equation of a circle of given center and radius is derived using the Pythagorean Theorem.

WHAT I NEED TO KNOW:

HOW TO USE THE DISTANCE FORMULA TO FIND THE RADIUS OF THE CIRCLE

Given the center and a point on the circle, the radius is the distance from the center to the point

| ON FORMULA SHEET: |
| :--- | :--- |
| $(x-h)^{2}+(y-k)^{2}=r^{2}$ |

HOW TO IDENTIFY THE FOLLOWING GIVEN EQUATION:

CENTER	RADIUS	DIAMETER
(h, k)	r	Diameter $=2 \mathrm{r}$

HOW TO FIND THE EQUATION OF THE CIRCLE GIVEN:	
COORDINATES OF THE ENDPOINTS OF A DIAMETER	COORDINATES OF THE CENTER AND A POINT ON THE CIRCLE
Use the distance formula to find the length of diameter. Radius = diameter/2 Use midpoint formula to find the coordinate of the center (h, k). Plug h, k, and r into the equation for equation of a circle on formula sheet.	Use distance formula to find length of radius. Use center (h, k) and radius, r , and plug into formula of equation of a circle on formula sheet.

HOW TO IDENTIFY A POINT ON THE CIRCLE GIVEN THE CENTER AND RADIUS	
WITHOUT CALCULATOR	WITH CALCULATOR APP
On graph paper, plot the center of the circle. From the center, count, either up, down, left or right the length of the radius.	Go to APPS CONICS ENT ENT Type in h, k, and r GRAPH TRACE Right arrow key will give different points

G. 12 PROBLEMS:

Given: Circle O with diameter $\overline{C D}$
$C(-7,-4)$ and $D(1,2)$
Create the equation of this circle.

Given: Circle W
$W(-4,6)$
Radius $=\mathbf{1 0}$ units
Which point lies on circle W ?

A $(0,4)$
B $(2,10)$
C. $(4,0)$

D $(6,16)$

The coordinates of the center of a circle are (-2,6). This circle has a diameter of 10 units.
a) What is the equation of the circle?

$$
(x+2)^{2}+(y-6)^{2}=25
$$

b) Give the integral coordinates of two points that lie on the circle.

The equation of a circle is $(x-3)^{2}+(y+4)^{2}=16$.
a) What are the coordinates of the center of the circle? (3,-4)
b) What is the radius of the circle? 4

Possible points:
c) What is the diameter of the circle? ${ }^{8}$
d) Give the integral coordinates of two points that lie on the circle.

Circle O is defined by the equation $x^{2}+(y-2)^{2}=25$. Plot the center of circle O and one point with integral coordinates that lies on circle 0 .

- Find the total surface area of cylinders, prisms, pyramids, cones, and spheres, using the appropriate formulas.
- Calculate the volume of cylinders, prisms, pyramids, cones, and spheres, using the appropriate formulas.
- Solve problems, including real-world problems, involving total surface area and volume of cylinders, prisms, pyramids, cones, and spheres as well as combinations of three-dimensional figures.
- Calculators may be used to find decimal approximations for results.

WHAT I NEED TO KNOW:

HOW TO USE THE FORMULAS ON THE FORMULA SHEET

$A=\frac{1}{2} b h$
$A=\frac{1}{2} a b \sin C$

$A=b h$

$$
\begin{aligned}
& p=4 s \\
& A=s^{2}
\end{aligned}
$$

$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$p=2 l+2 w$
$A=l w$

$V=B h$
$L . A .=h p$
$V=\frac{4}{3} \pi r^{3}$
$S . A .=4 \pi r^{2}$
$V=\frac{4}{3} \pi r^{3}$
$S . A .=4 \pi r^{2}$

$C=2 \pi r$
$C=\pi d$
$A=\pi r^{2}$

$V=\pi r^{2} h$
$L A .=2 \pi r h$
$S . A .=2 \pi r^{2}+2 \pi r h$
$S . A .=h p+2 B$
$V=\frac{1}{3} \pi r^{2} h$
$L A .=\pi r l$
$S . A .=\pi r^{2}+\pi r l$

$V=l w h$
$S . A .=2 l w+2 l h+2 w h$

$V=\frac{1}{3} B h$
$L_{.} A .=\frac{1}{2} l p$
$S . A .=\frac{1}{2} l p+B$

KEY WORDS FOR VOLUME

Units cubed
Amount of
space occupied
by_obiect

THE DIFFERENCE BETWEEN B AND b

B means area of the base. b means length of base.

KEY WORDS FOR SURFACE AREA

Units squared
How much material
needed to cover...

SOMETIMES YOU MAY NEED TO ADD VOLUMES AND SOMETIMES YOU MAY NEED TO SUBTRACT!

Volume of water with rock minus volume of water =
 volume of rock

Volume of cone plus volume of half of sphere $=$ total volume

G. 13 PROBLEMS:

A cylinder has a volume of 300π cubic centimeters and a base with a circumference of 10π centimeters. What is the height of the cylinder?

A 30 cm
B 15 cm
C 12 cm
D 3 cm
Two cylinders, a sphere, and a cone are shown. Select the two objects with the same volume.

A cone has a slant height of $\mathbf{1 0}$ centimeters and a lateral area of $\mathbf{6 0} \pi$ square centimeters. What is the volume of a sphere with a radius equal to that of the cone? $904.32 \mathrm{~cm}^{3}$

A fish tank in the shape of a rectangular prism has these dimensions:

- length $=\mathbf{2 0}$ inches
- width $=10$ inches
- height = $\mathbf{1 2}$ inches

What is the volume of water in the tank when it is $\frac{4}{5}$ full?
a) compare ratios between side lengths, perimeters, areas, and volumes;
b) determine how changes in one or more dimensions of an object affect area and/or volume of the object;
c) determine how changes in area and/or volume of an object affect one or more dimensions of the object; and
d) solve real-world problems about similar geometric objects.

- Compare ratios between side lengths, perimeters, areas, and volumes, given two similar figures.
- Describe how changes in one or more dimensions affect other derived measures (perimeter, area, total surface area, and volume) of an object.
- Describe how changes in one or more measures (perimeter, area, total surface area, and volume) affect other measures of an object.
- Solve real-world problems involving measured attributes of similar objects.

WHAT I NEED TO KNOW:

RATIOS			
LENGTHS	PERIMETERS	SURFACE AREA	VOLUME
$\frac{a}{b}$	$\frac{a}{b}$	$\frac{a^{2}}{b^{2}}$	$\frac{a^{3}}{b^{3}}$

DETERMINE HOW CHANGES IN ONE OR MORE DIMENSIONS OF AN OBJECT AFFECT AREA/OR VOLUME OF THE OBJECT AND VICE-VERSA

Use your own numbers to fit situation. Plug in numbers to first situation. Then plug in numbers to the change of situation. Observe the change.

G. 14 PROBLEMS:

A company makes two similar cylindrical containers. The total surface area of the smaller container is $\mathbf{0 . 8 1}$ times that of the larger container. The height of the larger container is 60 centimeters. What is the height of the smaller container?

A rectangular prism has a volume of $36 \mathrm{~cm}^{3}$.
a) If the height of the prism is tripled and the other dimensions do not change, what is the volume of the new rectangular prism? $108 \mathrm{~cm}^{3}$
b) If all dimensions of the original rectangular prism are tripled, what is the volume of the new rectangular prism?

The ratio of the volume of two spheres is $\mathbf{8 : 2 7}$. What is the ratio of the lengths of the radii of these two spheres?

\section*{| 1 | 2 | 3 | 4 | 6 | 8 | 9 | 13 | 19 | 27 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

A cylinder has a surface area of 96 square inches. If all dimensions of this cylinder are multiplied by $\frac{1}{2}$ to create a new $\quad \begin{aligned} & 24 \text { square } \\ & \text { inches }\end{aligned}$ cylinder, what will be the surface area of the new cylinder?

The heights of two similar triangles are in the ratio 2:5. If the area of the larger triangle is 400 square units, what is the area of the smaller triangle?
(A) 64 square units

B 160 square units
C 1,000 square units
D 2,500 square units
If the height of a rectangular prism is decreased by $\frac{1}{3}$, then which statement is true?
(A) The volume would decrease by $\frac{1}{3}$.

B The volume would decrease by $\frac{1}{6}$.
C The volume would decrease by $\frac{1}{9}$.
D The volume would decrease by $\frac{1}{27}$.

